Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 16(8): e0255411, 2021.
Article in English | MEDLINE | ID: covidwho-1745358

ABSTRACT

Human modification of water and nutrient flows has resulted in widespread degradation of aquatic ecosystems. The resulting global water crisis causes millions of deaths and trillions of USD in economic damages annually. Semiarid regions have been disproportionately affected because of high relative water demand and pollution. Many proven water management strategies are not fully implemented, partially because of a lack of public engagement with freshwater ecosystems. In this context, we organized a large citizen science initiative to quantify nutrient status and cultivate connection in the semiarid watershed of Utah Lake (USA). Working with community members, we collected samples from ~200 locations throughout the 7,640 km2 watershed on a single day in the spring, summer, and fall of 2018. We calculated ecohydrological metrics for nutrients, major ions, and carbon. For most solutes, concentration and leverage (influence on flux) were highest in lowland reaches draining directly to the lake, coincident with urban and agricultural sources. Solute sources were relatively persistent through time for most parameters despite substantial hydrological variation. Carbon, nitrogen, and phosphorus species showed critical source area behavior, with 10-17% of the sites accounting for most of the flux. Unlike temperate watersheds, where spatial variability often decreases with watershed size, longitudinal variability showed an hourglass shape: high variability among headwaters, low variability in mid-order reaches, and high variability in tailwaters. This unexpected pattern was attributable to the distribution of human activity and hydrological complexity associated with return flows, losing river reaches, and diversions in the tailwaters. We conclude that participatory science has great potential to reveal ecohydrological patterns and rehabilitate individual and community relationships with local ecosystems. In this way, such projects represent an opportunity to both understand and improve water quality in diverse socioecological contexts.


Subject(s)
Citizen Science , Ecosystem , Rivers , Nitrogen , Phosphorus , Water Quality
2.
Environ Sci (Camb) ; 92021.
Article in English | MEDLINE | ID: covidwho-1373455

ABSTRACT

SARS-CoV-2 RNA detection in wastewater is being rapidly developed and adopted as a public health monitoring tool worldwide. With wastewater surveillance programs being implemented across many different scales and by many different stakeholders, it is critical that data collected and shared are accompanied by an appropriate minimal amount of metainformation to enable meaningful interpretation and use of this new information source and intercomparison across datasets. While some databases are being developed for specific surveillance programs locally, regionally, nationally, and internationally, common globally-adopted data standards have not yet been established within the research community. Establishing such standards will require national and international consensus on what metainformation should accompany SARS-CoV-2 wastewater measurements. To establish a recommendation on minimum information to accompany reporting of SARS-CoV-2 occurrence in wastewater for the research community, the United States National Science Foundation (NSF) Research Coordination Network on Wastewater Surveillance for SARS-CoV-2 hosted a workshop in February 2021 with participants from academia, government agencies, private companies, wastewater utilities, public health laboratories, and research institutes. This report presents the primary two outcomes of the workshop: (i) a recommendation on the set of minimum meta-information that is needed to confidently interpret wastewater SARS-CoV-2 data, and (ii) insights from workshop discussions on how to improve standardization of data reporting.

3.
Sci Total Environ ; 775: 145790, 2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1093220

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease (COVID-19), is shed in feces and the viral ribonucleic acid (RNA) is detectable in wastewater. A nine-week wastewater epidemiology study of ten wastewater facilities, serving 39% of the state of Utah or 1.26 M individuals was conducted in April and May of 2020. COVID-19 cases were tabulated from within each sewershed boundary. RNA from SARS-CoV-2 was detectable in 61% of 126 wastewater samples. Urban sewersheds serving >100,000 individuals and tourist communities had higher detection frequencies. An outbreak of COVID-19 across two communities positively correlated with an increase in wastewater SARS-CoV-2 RNA, while a decline in COVID-19 cases preceded a decline in RNA. SARS-CoV-2 RNA followed a first order decay rate in wastewater, while 90% of the RNA was present in the liquid phase of the influent. Infiltration and inflow, virus decay and sewershed characteristics should be considered during correlation analysis of SAR-CoV-2 with COVID-19 cases. These results provide evidence of the utility of wastewater epidemiology to assist in public health responses to COVID-19.


Subject(s)
COVID-19 , Coronavirus , Cost of Illness , Humans , RNA, Viral , SARS-CoV-2 , Utah , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL